Programming Elastic MapReduce
Using AWS Services to Build an End-to-End Application
Publisher: O'Reilly Media
Released: December 2013
Pages: 174

Although you don’t need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS).

Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you’ll learn how to assemble the building blocks necessary to solve your biggest data analysis problems.

  • Get an overview of the AWS and Apache software tools used in large-scale data analysis
  • Go through the process of executing a Job Flow with a simple log analyzer
  • Discover useful MapReduce patterns for filtering and analyzing data sets
  • Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow
  • Learn the basics for using Amazon EMR to run machine learning algorithms
  • Develop a project cost model for using Amazon EMR and other AWS tools
Table of Contents
Product Details
About the Author
Colophon
Recommended for You
Customer Reviews
 
Buy 2 Get 1 Free Free Shipping Guarantee
Buying Options
Immediate Access - Go Digital what's this?
Ebook: $27.99
Formats:  ePub, Mobi, PDF
Print & Ebook: $32.99
Print: $29.99