Applied Text Analysis with Python
Enabling Language Aware Data Products with Machine Learning
Publisher: O'Reilly Media
Final Release Date: December 2016
Pages: 350

With Early Release ebooks, you get books in their earliest form—the author's raw and unedited content as he or she writes—so you can take advantage of these technologies long before the official release of these titles. You’ll also receive updates when significant changes are made, new chapters are available, and the final ebook bundle is released.

The programming landscape of natural language processing has changed dramatically in the past few years. Machine learning approaches now require mature tools like Python’s scikit-learn to apply models to text at scale. This practical guide shows programmers and data scientists who have an intermediate-level understanding of Python and a basic understanding of machine learning and natural language processing how to become more proficient in these two exciting areas of data science.

This book presents a concise, focused, and applied approach to text analysis with Python, and covers topics including text ingestion and wrangling, basic machine learning on text, classification for text analysis, entity resolution, and text visualization. Applied Text Analysis with Python will enable you to design and develop language-aware data products.

You’ll learn how and why machine learning algorithms make decisions about language to analyze text; how to ingest, wrangle, and preprocess language data; and how the three primary text analysis libraries in Python work in concert. Ultimately, this book will enable you to design and develop language-aware data products.

Table of Contents
Product Details
About the Author
Recommended for You
Customer Reviews
 
Buy 2 Get 1 Free Free Shipping Guarantee
Buying Options
Immediate Access - Go Digital what's this?
Pre-Order  Print:  $49.99
September 2017 (est.)